人工智能继续迭代 类脑计算悄然走红
深度学习正遍地开花,但它可能并非人工智能的终极方案。无论是学术界还是产业界,都在思考人工智能的下一步发展路径:类脑计算已悄然成为备受关注的“种子选手”之一。
12月16日至17日,由北京未来芯片技术高精尖创新中心及清华大学微电子学研究所联合主办的“北京高精尖论坛暨2019未来芯片论坛”在清华大学举行,这次论坛上,类脑计算成为多位权威专家热议的人工智能研究方向。
人工智能浪潮下的洋流
类脑计算又被称为神经形态计算(Neuromorphic Computing)。它不仅是学术会议关注的新热点,产业界也在探索之中。
11月中旬,英特尔官网宣布了一则消息:埃森哲、空中客车、通用电气和日立公司加入英特尔神经形态研究共同体(INRC),该共同体目前已拥有超过75个成员机构。
如果说,当下人工智能发展浪潮正波涛汹涌的话,类脑计算就是浪潮之下的洋流。虽不太引人注意,未来却有可能改变人工智能发展趋势。
原因之一是,深度学习虽在语音识别、图像识别、自然语言理解等领域取得很大突破,并被广泛应用,但它需要大量的算力支撑,功耗也很高。
“我们希望智能驾驶汽车的驾驶水平像司机一样,但现在显然还达不到。因为它对信息的智能判断和分析不够,功耗也非常高。”清华大学微纳电子系教授吴华强告诉科技日报记者,人工智能算法训练中心在执行任务时动辄消耗电量几万瓦甚至几十万瓦,而人的大脑耗能却仅相当于20瓦左右。
北京大学计算机科学技术系教授黄铁军也举了一个生动的例子:市场上应用深度学习技术的智能无人机已经十分灵巧,但从智能程度上看,却与一只苍蝇或蜻蜓相差甚远,尽管体积和功耗比后者高很多。
追求模拟大脑的功能
到底什么是类脑计算,它又凭什么赢得学术界和产业界的宠爱?
“类脑计算从结构上追求设计出像生物神经网络那样的系统,从功能上追求模拟大脑的功能,从性能上追求大幅度超越生物大脑,也称神经形态计算。”黄铁军接受科技日报记者采访时说。
类脑计算试图模拟生物神经网络的结构和信息加工过程。它在软件层面的尝试之一是脉冲神经网络(SNN)。
现在深度学习一般通过卷积神经网络(CNN)或递归神经网络(RNN)来实现。“CNN和RNN都属于人工神经网络,其中的人工神经元,至今仍在使用上世纪40年代时的模型。”黄铁军说,虽然现在设计出的人工神经网络越来越大,也越来越复杂,但从根本上讲,其神经元模型没有太大改进。
另一方面,在深度学习人工神经网络中,神经元之间的连接被称为权值。它们是人工神经网络的关键要素。
而在脉冲神经网络中,神经元之间却是神经脉冲,信息的表达和处理通过神经脉冲发送来实现。就像我们的大脑中,有大量神经脉冲在传递和流转。
黄铁军告诉记者,由于神经脉冲在不停地传递和流转,脉冲神经网络在表达和处理信息时,比深度学习的时间性更突出,更加适合进行高效的时空信息处理。
推广应用可能不需太久
也有人从硬件层面去实现类脑计算,比如神经形态芯片。
2019年7月,英特尔发布消息称,其神经形态研究芯片Loihi执行专用任务的速度可比普通CPU快1000倍,效率高10000倍。
“在对信息的编码、传输和处理方面,我们希望从大脑机制中获得启发,将这些想法应用到芯片技术上,让芯片的处理速度更快、水平更高、功耗更低。”吴华强也在进行神经形态芯片相关研究,他告诉科技日报记者。
吴华强介绍,在传统的冯·诺依曼架构中,信息的处理和存储是分开的,而人的大脑在处理信息时,存储和处理是融为一体的。
“所以我们在尝试研发存算一体化的芯片,希望通过避免芯片内部不停地搬运数据,来大幅提高芯片的能效比。”吴华强说,他的团队现在也已研发出存算一体的样品芯片。
谈到类脑计算的进展,黄铁军告诉记者,目前类脑计算仍在摸索阶段,还缺乏典型的成功应用。但商业公司已经嗅到味道,相关技术获得规模性应用可能不需要太长时间。
“现在的神经形态计算还比较初步,它的发展水平跟现有主流人工智能算法相比,还存在一定差距。”中科院自动化所研究员张兆翔接受科技日报记者采访时认为,但作为一种新的探索方式,应该继续坚持,因为它可能就是未来人工智能技术发展的重要突破口。(记者 刘园园)