来自 财经 2023-03-14 00:57 的文章

逐“日”追光走近中国新一代“人造太阳”HL-2M

原标题:逐“日”追光 走近中国新一代“人造太阳”HL-2M

  行星发动机、智能量子计算机、太空电梯……一段时间以来,电影《流浪地球2》中的“硬核科技”元素引发广泛关注。你知道吗?电影中的很多装备在现实中都有原型。

  “你们尽管想象,我们负责实现。”最近,社交媒体上,中核集团一张引爆网络的海报,展示的便是电影中的行星发动机和现实中的中国新一代“人造太阳”装置(HL-2M)、中国环流器二号A装置(HL-2A)。网友们不禁热血沸腾,纷纷感叹,“原来中国科幻的背后是中国制造”。

  科幻照进现实。电影中行星发动机推动地球利用的是核聚变释放的能量,而HL-2M、HL-2A正是我国探索受控核聚变的重要装置,被称为“人造太阳”。其中,HL-2M装置是我国目前规模最大、参数最高的磁约束核聚变实验研究装置。前不久,它入选了“2022年度央企十大国之重器”。

  这些装置为何被称为“人造太阳”?我们为什么要造“太阳”?新一代“人造太阳”实现了哪些技术突破和自主创新?记者近日采访了中核集团核工业西南物理研究院有关负责同志,让我们一起跟随“造太阳”的人,探寻新一代“人造太阳”的奥秘。

  原料取用不尽、燃耗低能量大、产物清洁友好

  受控核聚变,理想的“终极能源”

  四川成都双流西南航空港,坐落着核工业西南物理研究院。这是我国最早从事核聚变能源开发的专业研究院。

  研究院聚变科学所那座建了22年的老楼,便是新一代“人造太阳”的“家”。

  人类真的可以造太阳吗?面对记者的疑问,核工业西南物理研究院聚变科学所所长钟武律给出了答案:“人造太阳”并不是真的造一个太阳,而是建一个装置,利用太阳发光发热的原理,持续可控地输出能量。

  “太阳为什么能够持续发光发热?是因为它时刻都在发生着核聚变反应。”钟武律告诉记者,我们“造太阳”的最终目的是通过核聚变来发电。

  众所周知,能源危机被认为是人类社会发展面临的最大难题。科学家们把视线转向核能,而核能主要有核裂变和核聚变两种形式。

  当前,世界上商用的核电站利用的是核裂变能,即由较重的原子核(如铀)通过核反应过程分裂成两个或两个以上较轻的原子核,从中释放出能量。然而,铀矿的储量有限,长远看仍难以满足人类需求。

  核聚变的过程正相反,是指由质量较轻的原子核在超高温条件下聚合成较重原子核,并释放出巨大能量,且单位质量下释放的能量比裂变高得多。太阳的光和热,就来源于核聚变反应释放出的能量。

  “核聚变能源的优势非常明显。一是燃料在地球上的储量极为丰富;二是不产生高放射性核废料,环境友好;三是具有固有安全性等优点。”钟武律进一步解释道。

  记者了解到,支撑核聚变反应的主要原料可以从海水中提取。据测算,从一升海水中提取出的氘,经完全聚变反应后释放的能量,足够一辆汽车从北京开到海南。按照地球上的海水资源计算,理论上用于聚变反应释放的能量足够人类使用上百亿年,几乎无穷无尽。

  数据最具说服力。据90后高级工程师、核工业西南物理研究院博士科普团金牌科普员郑雪介绍,一座100万千瓦的火电站,每年消耗煤炭约210万吨;同等级的核电站,每年消耗浓缩铀约30吨。而如果建造一座100万千瓦的核聚变电站,每年仅需消耗燃料约0.12吨。

  正因为此,核聚变能被认为是一种理想的“终极能源”,一旦成功应用,将从根本上解决人类对能源的需求问题。

  不过,想要利用核聚变能,还必须要让核聚变变得可控。“20世纪50年代,第一颗氢弹爆炸成功,就意味着人类制造核聚变反应成为了现实,但那是不可控的、瞬间的。我们‘造太阳’,就是要通过某种特殊的途径,将核聚变反应过程变得可控,让它源源不断地输出聚变能为我们所用。”钟武律说。

  让核聚变可控,这是一个世界级难题,必须要同时满足三个非常苛刻的条件,也就是所谓的“聚变三乘积”。

  “第一个是它需要上亿摄氏度的高温,因为只有温度特别高,原子核才会‘跑’得更快。第二个是等离子体的密度要足够高,这样原子核之间碰撞发生聚合反应的概率就会提高。第三个就是要长时间地控制住这些原子核,也就是说要将高温高密度的核反应条件维持足够长的时间。只有这样,才能够使核聚变发生,并且持续下去。”钟武律说。