来自 科技 1970-01-01 08:00 的文章

  自顺利着陆月球背面以来,嫦娥四号着陆器和玉兔二号月球车的一举一动都备受关注。事实上,我们能得知它们的动态,多亏“鹊桥”号中继星架起的通信桥梁。

  在提供通信中继服务的同时,“鹊桥”号中继星还肩负着多项科学与技术实验任务。日前,嫦娥四号任务工程团队对“鹊桥”号中继星上所搭载的中-荷低频射电探测仪(NCLE)载荷实施了载荷三根天线展开工作。

  “此次天线的展开标志着NCLE载荷正式进入科学探测阶段,且成为目前距离地球最远、可长期工作的空间射电天文台。”负责领导NCLE中方团队的中科院国家天文台研究员平劲松在接受科技日报记者采访时说道。

  “聆听”宇宙深处的声音

  传回的图片显示,在不同角度竖起三根天线的“鹊桥”号仿佛变身成“天线宝宝”,竖起了“耳朵”。可别小瞧这三根天线,它们将“聆听”来自宇宙深处的声音,帮助科学家破解宇宙黑暗时代的一些谜团。

  宇宙大爆炸后,温度非常高,密度也非常大,几乎处处在发光。紧接着,宇宙进入了一个不发光的时期,即黑暗时代。这一时期,宇宙中充斥着大量的中性氢,发光的第一代恒星还没有形成。

  为了探寻黑暗时代的“遗迹”,天文学家一直都在寻找原始的中性氢气中,电子自发反转自旋方向时发出的信号。这些信号在诞生之初本来是波长较短的射电波,但在130亿年的漫长旅行中,宇宙的膨胀效应使它们变成了波长很长的低频波。

  “想要探测到这一低频波信号,需要在非常‘安静’的电磁环境中去‘倾听’,月球背面及其上空正好是一个理想场所。”平劲松表示,中荷两方科学家都希望,随着NCLE载荷的正常运转,我们可以更多地了解关于宇宙黑暗时代的未知信息。

  科学家不仅希望找到来自黑暗时代的低频射电信号,还迫切想知道,宇宙大爆炸之后,这些信号在宇宙中的分布情况,比如是否是均匀分布。不少专家认为,其分布状态很可能是不均匀的,如果能找到分布不均匀性的证据,将是一个重要发现。

  “当然,想要证明其不均性,仅仅靠NCLE载荷难以实现,需要成百上千的类似天线组成阵列才有可能做到,这也是未来努力的方向。在未来宇宙学领域的低频射电探测方向上,NCLE更多的是扮演探路者的角色。”平劲松说道。

  问路系外行星射电探测

  行星射电爆发的探测和研究,是天文学和地球物理学的一个交叉领域。行星射电爆发并不遥远,事实上,在极光发生区域的上空,还存在地球射电爆发现象。

  不只是地球,太阳系内五颗行星都有类似的射电爆发。这些行星辐射的千米波电磁波,频率范围分布在100千赫兹到1200千赫兹之间,爆发时长从几秒到几分钟、几十分钟不等。

  尽管行星射电爆发的现象常见,但关于它们的辐射机制却没有定论。平劲松介绍,对太阳系行星射电爆发进行监视监测是NCLE的重要任务之一。对地球、木星射电爆发展开长期系统研究,有助于进一步揭示这些爆发辐射的极光功率和太阳风动力学功率之间的关联。

  此外,研究地球和木星射电爆发的射电天文学家们猜测,既然地球和木星在射电波段是如此的耀眼,是不是可以利用已知的行星射电辐射知识,在光学以外的其他波段来探测系外行星?

  然而,想探测诸如木星大小的系外行星的射电辐射,需要探测器拥有强大的探测能力。当前的射电望远镜阵列只能探测到距离我们一光年的类木星射电爆发强度的信号。这远小于地球与离太阳系最近的比邻星之间的距离。

  因此,想探测更远的系外行星,其磁场必须能产生更强的射电信号,例如比木星体积大10到100倍的类木行星,其信号才有可能被探测到。另外,只要恒星的磁场强度足够强,这个恒星系统就能产生比木星亮一百万倍的射电爆发。

  迄今为止,使用低频射电望远镜寻找来自系外行星的第一束射电波的尝试还没有成功。平劲松认为,NCLE对木星和地球的射电爆发探测,将为后续探测方法的优化、探测能力的提升,提供新的线索和途径。

  天地配合展开协同观测

  虽然是目前距离地球最远的空间射电天文台,可NCLE并不孤独。它将与地面和空间的其他射电观测设施进行协同观测,展开多信使的天文学研究。

  什么是多信使天文学研究?平劲松以太阳射电爆发为例说道,太阳发出的电磁波辐射通常覆盖了比较宽的频带,从毫米波一直到千米波。就整个辐射过程而言,不仅需要探测高频波段,地面探测不到的低频部分也需要空间设施进行探测。多个设施的联合观测,有利于实现对同一事件的完整观测。

热门文章